Chaotic Memory Randomization for Securing Embedded Systems
نویسندگان
چکیده
Embedded systems permeate through nearly all aspects of modern society. From cars to refrigerators to nuclear refineries, securing these systems has never been more important. Intrusions, such as the Stuxnet malware which broke the centrifuges in Iran’s Natanz refinery, can be catastrophic to not only the infected systems, but even to the wellbeing of the surrounding population. Modern day protection mechanisms for these embedded systems generally look only at protecting the network layer, and those that try to discover malware already existing on a system typically aren’t efficient enough to run on a standalone embedded system. As such, we present a novel way to ensure that no malware has been inserted into an embedded system. We chaotically randomize the entire memory space of the application, interspersing watchdog-monitor programs throughout, to monitor that the core application hasn’t been infiltrated. By validating the original program through conventional methods and creating a clean reset, we can ensure that any inserted malware is purged from the system with minimal effect on the given system. We also present a software prototype to validate the possibility of this approach, but given the limitations and vulnerabilities of the prototype, we also suggest a hardware alternative to the system.
منابع مشابه
Latency Compensation in Multi Chaotic Systems Using the Extended OGY Control Method
The problem discussed in this paper is the effect of latency time on the OGY chaos control methodology in multi chaotic systems. The Smith predictor, rhythmic and memory strategies are embedded in the OGY chaos control method to encounter loop latency. A comparison study is provided and the advantages of the Smith predictor approach are clearly evident from the closed loop responses. The comple...
متن کاملEffective Entropy: Security-Centric Metric for Memory Randomization Techniques
User space memory randomization techniques are an emerging field of cyber defensive technology which attempts to protect computing systems by randomizing the layout of memory. Quantitative metrics are needed to evaluate their effectiveness at securing systems against modern adversaries and to compare between randomization technologies. We introduce Effective Entropy, a measure of entropy in use...
متن کاملChaotic Genetic Algorithm based on Explicit Memory with a new Strategy for Updating and Retrieval of Memory in Dynamic Environments
Many of the problems considered in optimization and learning assume that solutions exist in a dynamic. Hence, algorithms are required that dynamically adapt with the problem’s conditions and search new conditions. Mostly, utilization of information from the past allows to quickly adapting changes after. This is the idea underlining the use of memory in this field, what involves key design issue...
متن کاملSecuring Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining
Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...
متن کاملCHAOS EMBEDDED CHARGED SYSTEM SEARCH FOR PRACTICAL OPTIMIZATION PROBLEMS
Chaos is embedded to the he Charged System Search (CSS) to solve practical optimization problems. To improve the ability of global search, different chaotic maps are introduced and three chaotic-CSS methods are developed. A comparison of these variants and the standard CSS demonstrates the superiority and suitability of the selected variants for practical civil optimization problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.00742 شماره
صفحات -
تاریخ انتشار 2016